## Diffie-Hellman Angriff

Haftendorn 2013 (15), www.mathematik-verstehen.de

 $\mathbf{p} := 101 \cdot 101$  gefunden durch  $\mathbf{kry} \setminus \mathbf{nextprime}(100) \cdot 101$ 

g:=83 ► 83 Anton wählt a:=59 ► 59 Berta wählt b:=41 ► 41

Anton:  $alpha:=kry\pmod(g,a,p) > 99$  Berta:  $beta:=kry\pmod(g,b,p) > 50$ 

Anton: kry\pmod(beta,a,p) • 29 Berta: kry\pmod(alpha,b,p) • 29

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

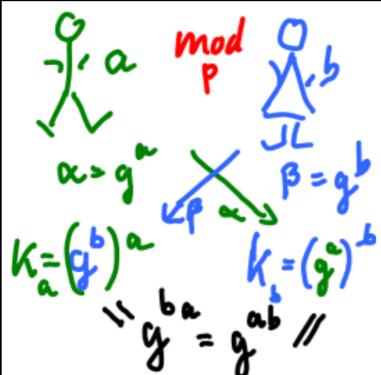
Mister X fängt ab: p ▶ 101 g ▶ 83 alpha ▶ 99 beta ▶ 50

Er muss dazu unter den Potenzen von g diejenigen suchen, die alpha oder beta ergeben.

Er braucht nur eine solche Lösung von  $\mathbf{g}^{XI}$ =alpha •  $83^{XI}$ =99 oder von  $\mathbf{g}^{X2}$ =beta •  $83^{X2}$ =50

Siehe die Visualisierung dieser Fragestellung mit der gewöhnlichen Exponentialfunktion an.

Die Lösungen kann man in den Ganzen Zahlen nicht gebrauchen.

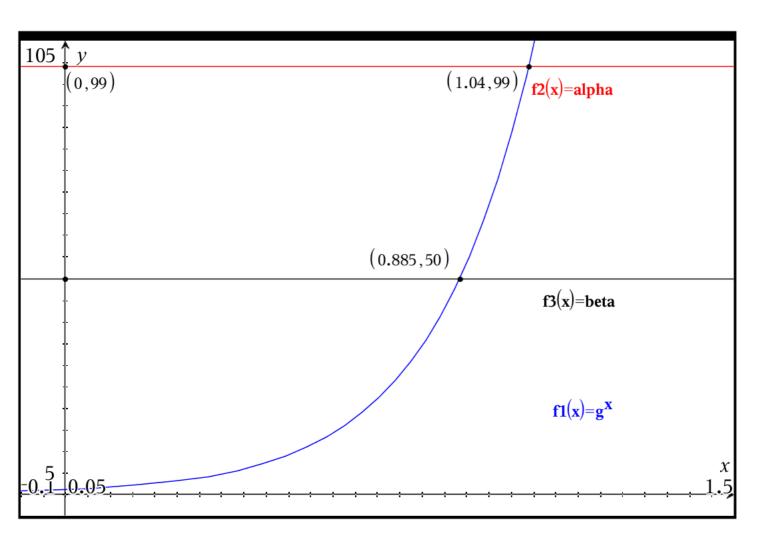

Die Tabellenseite und Datenpunkte-Seiten zeigen alle Potenzen von g modulo p.

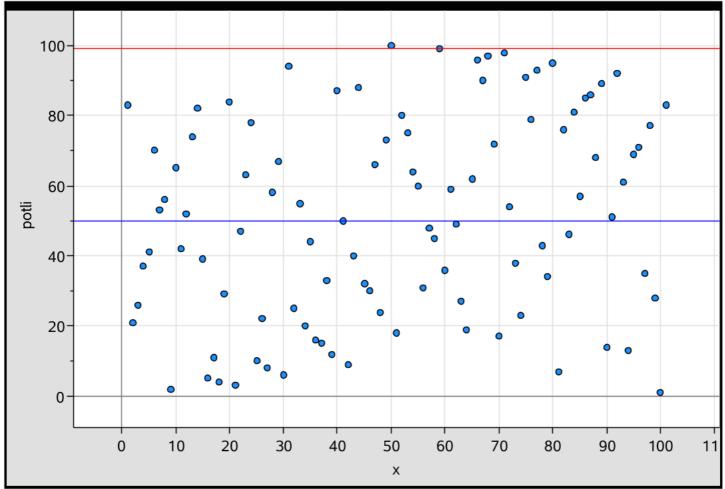
Als waagerechte Geraden sind y=alpha und y=beta eingetragen. Welcher Punkt wird genau getroffen???????

## li:=potli

**\}** \} \} \} 83,21,26,37,41,70,53,56,2,65,42,52,74,82,39,5,11,4,29,84,3,47,63,78,10,22,8,58,67,6,94,25,55,20,4

Diese Liste ist p-1 Plätze lang. Für kleine p kann darin alpha suchen, für große p nicht.





Mister X kennt: p,g,alpha,beta

Wenn er dann a durch Suchen herausbekommt, kann er  $beta^a$  rechnen und hat k

Wenn er dann  ${f b}$  durch Suchen herausbekommt, kann er  ${f alpha}^{f b}$  rechnen und hat  ${f k}$ 

diffie-angriff.tns 1 von: 7

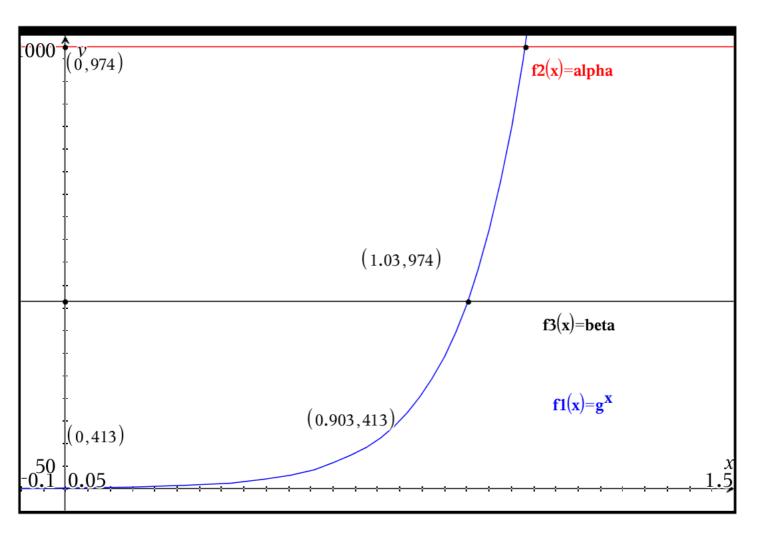


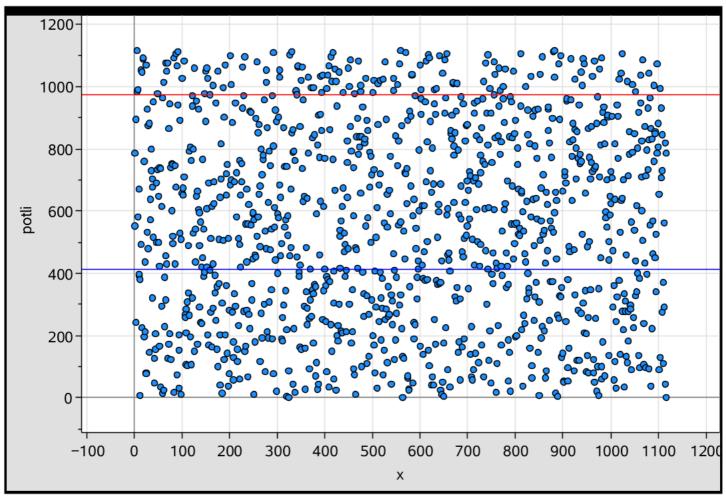


diffie-angriff.tns 2 von: 7

| •  | Ax                                                     | B potli | С | D | E | F | G                     |  |
|----|--------------------------------------------------------|---------|---|---|---|---|-----------------------|--|
| =  | =seq(i,i,1,'                                           |         |   |   |   |   |                       |  |
| 1  | 1                                                      | 83      |   |   |   |   |                       |  |
| 2  | 2                                                      | 21      |   |   |   |   |                       |  |
| 3  | 3                                                      | 26      |   |   |   |   |                       |  |
| 4  | 4                                                      | 37      |   |   |   |   |                       |  |
| 5  | 5                                                      | 41      |   |   |   |   |                       |  |
| 6  | 6                                                      | 70      |   |   |   |   |                       |  |
| 7  | 7                                                      | 53      |   |   |   |   |                       |  |
| 8  | 8                                                      | 56      |   |   |   |   |                       |  |
| 9  | 9                                                      | 2       |   |   |   |   |                       |  |
| 10 | 10                                                     | 65      |   |   |   |   |                       |  |
| 11 | 11                                                     | 42      |   |   |   |   | \<br>\<br>\<br>\<br>\ |  |
|    | $A \mathbf{x} := \operatorname{seq}(i,i,1,\mathbf{p})$ |         |   |   |   |   |                       |  |

Diffie-Hellman-Angriff, p etwa 1000


getroffen???????


li:=potli

diffie-angriff.tns 3 von: 7

• {787,551,241,894,985,1114,990,581,394,669,396,9,381,491,1052,227,1046,1090,1091,761,195,436,

Diese Liste ist p-1 Plätze lang. Für kleine p kann darin alpha suchen, für große p nicht.





diffie-angriff.tns 4 von: 7

| •  | A X                       | B potli | С | D | E | F | G |  |
|----|---------------------------|---------|---|---|---|---|---|--|
| =  | =seq(i,i,1,' <sub> </sub> |         |   |   |   |   |   |  |
| 1  | 1                         | 787     |   |   |   |   |   |  |
| 2  | 2                         | 551     |   |   |   |   |   |  |
| 3  | 3                         | 241     |   |   |   |   |   |  |
| 4  | 4                         | 894     |   |   |   |   |   |  |
| 5  | 5                         | 985     |   |   |   |   |   |  |
| 6  | 6                         | 1114    |   |   |   |   |   |  |
| 7  | 7                         | 990     |   |   |   |   |   |  |
| 8  | 8                         | 581     |   |   |   |   |   |  |
| 9  | 9                         | 394     |   |   |   |   |   |  |
| 10 | 10                        | 669     |   |   |   |   |   |  |
| 11 | 11                        | 396     |   |   |   |   |   |  |
| _  |                           |         |   |   |   |   |   |  |

Diffie-Hellman-Angriff, p etwa 10000

```
Diffie-Hellman Angriff Haftendorn 2013 (15), www.mathematik-verstehen.de
```

p:=10007 ► 10007 gefunden durch kry\nextprime(10000) ► 10007

g:=6784 ► 6784 Anton wählt a:=2169 ► 2169 Berta wählt b:=5741 ► 5741

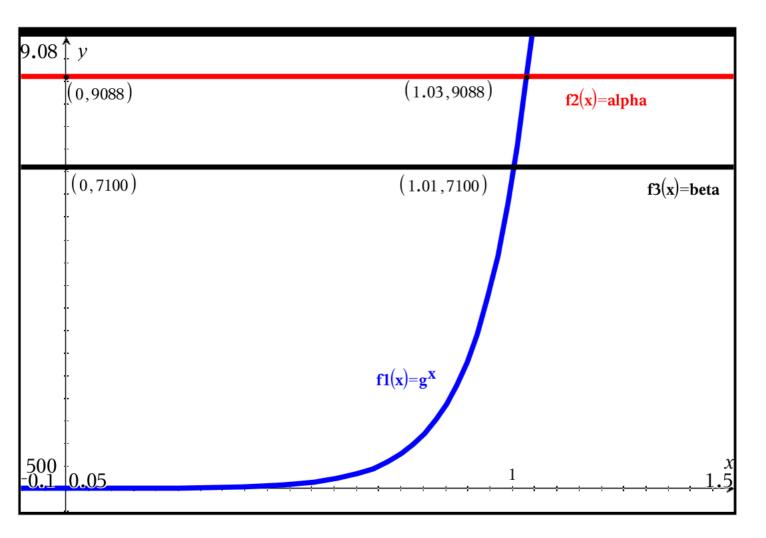
Anton:  $alpha:=kry\pmod(g,a,p) \cdot 9088$  Berta:  $beta:=kry\pmod(g,b,p) \cdot 7100$ 

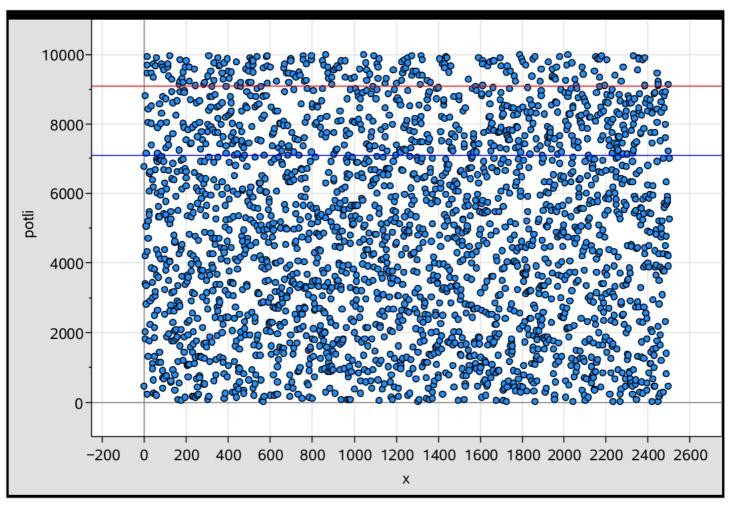
Anton:  $kry \pmod{beta,a,p} \cdot 1301$  Berta:  $kry \pmod{alpha,b,p} \cdot 1301$ 

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

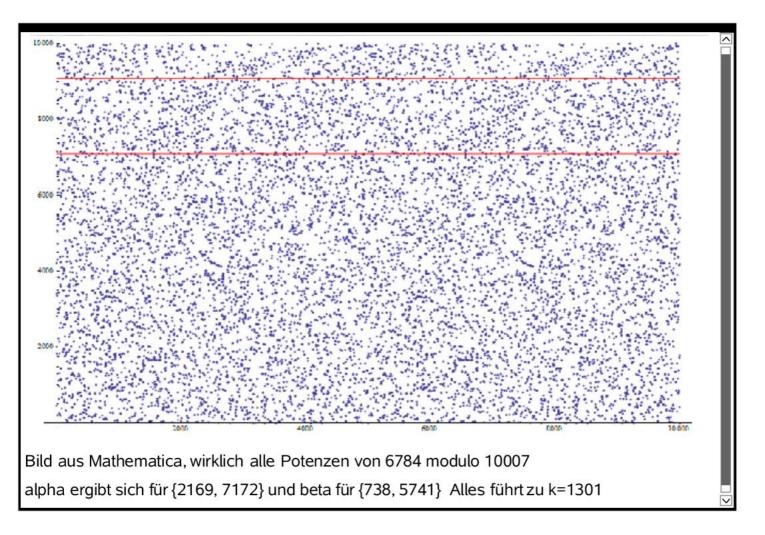
Mister X fängt ab: p > 10007 g > 6784 alpha > 9088 beta > 7100

Er muss dazu unter den Potenzen von g diejenigen suchen, die alpha oder beta ergeben.


Er braucht nur eine solche Lösung  $\mathbf{g}^{x1}$ =alpha •  $6784^{x1}$ =9088 oder  $\mathbf{g}^{x2}$ =alpha •  $6784^{x2}$ =9088 Siehe die Visualisierung dieser Fragestellung mit der gewöhnlichen Exponentialfunktion an. Die Lösungen kann man in den Ganzen Zahlen nicht gebrauchen.


Die Tabellenseite und Datenpunkte-Seiten zeigen nicht allePotenzen von g modulo p, denn die Tabellen beim TI haben nur bis 2500 Plätze. Das ist nur etwa ein Viertel der Potenzen.

Als waagerechte Geraden sind y=alpha und y=beta eingetragen. Welcher Punkt wird genau getroffen?????? Mit diese Einschränkung hätte a gerade noch gefunden weren können.


Porbe: potli 2169] > 9088 Man hätte eine Prozedur haben müssen, die die Liste durchforstet.

diffie-angriff.tns 5 von: 7





diffie-angriff.tns 6 von: 7



| •                                                     |                         | B potli | С | D | E | F | G                |
|-------------------------------------------------------|-------------------------|---------|---|---|---|---|------------------|
| =                                                     | eq(i,i,1,' <sub>l</sub> |         |   |   |   |   |                  |
| 1228                                                  | 1228                    | 4229    |   |   |   |   |                  |
| 1229                                                  | 1229                    | 9474    |   |   |   |   |                  |
| 1230                                                  | 1230                    | 6662    |   |   |   |   |                  |
| 1231                                                  | 1231                    | 3396    |   |   |   |   |                  |
| 1232                                                  | 1232                    | 2350    |   |   |   |   |                  |
| 1233                                                  | 1233                    | 1249    |   |   |   |   |                  |
| 1234                                                  | 1234                    | 7294    |   |   |   |   |                  |
| 1235                                                  | 1235                    | 7888    |   |   |   |   |                  |
| 1236                                                  | 1236                    | 4763    |   |   |   |   |                  |
| 1237                                                  | 1237                    | 9596    |   |   |   |   |                  |
| 1238                                                  | 1238                    | 3729    |   |   |   |   | \<br>\<br>\<br>\ |
| $A \mathbf{x} = \operatorname{seq}(i,i,1,\mathbf{p})$ |                         |         |   |   |   |   |                  |

diffie-angriff.tns 7 von: 7